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Dissipative Dynamics and the Statistics of Energy
States of a Hookean Model for Protein Folding
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A generic model of a random polypeptide chain, with discrete torsional degrees
of freedom and Hookean spring connecting pairs of hydrophobic residues,
reproduces the energy probability distribution of real proteins over a very large
range of energies. We show that this system with harmonic interactions, under
dissipative dynamics driven by random noise, leads to a distribution of energy
states obeying a modified one-dimensional Ornstein�Uhlenbeck process and
giving rise to the so-called Wigner distribution. A tunably fine- or coarse-
grained sampling of the energy landscape yields a family of distributions for the
energies and energy spacings.

KEY WORDS: Protein folding; dissipative dynamics.

I. INTRODUCTION

We present a generic model hamiltonian for polypeptide chains which we
believe captures the essential mechanism driving the folding process,
namely hydrophobic interactions.(1�7)

We take the view here that the protein in its native state must essen-
tially correspond to a self-organized system, i.e., the ``native state'' should
be concieved of as the attractor of a dynamics. This typically corresponds
not to a unique conformation but to a set of conformations to which the
trajectory of the phase point representing the molecule is confined after
asymptotically long times.

Our model involves N coupled, discrete, over-damped torsional
degrees of freedom coupled by Hookean forces and driven by random
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noise. As a numerical realization of this dissipative system, we explore the
phase space under a dynamics based on relaxing pairs of rotational degrees
of freedom, namely the dihedral angles, sampled with a probability which
is a function of the conjugate torques,

P(i)=
|{i |

'

� i |{ i |
' . (1)

The energy landscape is effectively coarse- or fine-grained by tuning the
parameter '. For '=0, the dynamics is identical to very high temperature
Monte Carlo simulations.

We find that the energy probability distribution obtained from our
simulations may be very well represented by a Wigner distribution(8�10)

which, for a random quantity S, is given by

P(S)tS exp \&
?
4

S2+ (2)

while the coarse grained energy level distributions are comparable with the
nth (n=1, 2, 3,...) neighbor energy level spacing statistics encountered(11) in
the study of large nuclei. The energy histograms can also be very well fitted
with an ``inverse Gaussian'' (IG) distribution.

We are able to show that for harmonic potentials, quite independently
of the nature of the sequence of hydrophobic and polar residues, or the
dimensionality of the space, the energy of the system obeys a modified
Ornstein�Uhlenbeck (OU) process.(12) The stationary state distribution for
this process with reflecting boundary conditions introduced due to con-
straints, may then be related to the energy distribution. As a bonus, we are
also able to understand the distribution of relaxation times found for
global optimization problems(13) by Li and coworkers.

We have already reported in a separate publication(7) that under
Metropolis Monte Carlo dynamics, with random initial conditions, the
model exhibits power law relaxation for the initial stages of decay, and at
the later stages the relaxation obeys a stretched exponential with the expo-
nent ;&1�4. This Kohlrausch�Williams�Watts type relaxation behaviour
is observed experimentally for real proteins.(14�17) At zero temperature the
probability distribution function of the energy steps encountered along a
relaxation path in phase space also obeys a stretched exponential form,
with another exponent :&0.39. In ref. 7 we show that ;=:�(:+1), which
yields a value for ; in very good agreement with our simulation results.

The paper is organized as follows. In Section II we define our model,
in Section III we present our simulation results, in Section IV we show that
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the energy obeys an OU process. In Section V we discuss the relationship
between this model and other complex systems and outline work in
progress.

II. THE MODEL

We consider a model(7) consisting of N residues, treated as point ver-
tices, interacting via Hookean potentials. We have been motivated by the
model proposed by Halilog$ lu, Bahar, Erman(4) where all interactions
between the different residues are governed by confining square-law poten-
tials.(4�6, 18) In our model, however, the covalent bonds between residues
are treated as fixed rods of equal length (see Fig. 1). The residues located
at the vertices may be polar P or hydrophobic H. All the hydrophobic ver-
tices are to be connected to each other with springs of equal stiffness. This
feature mimicks the effective pressure that is exerted on the hydrophobic

Fig. 1. A chain of N=48 residues, half of which are randomly chosen to be hydrophobic,
(darker beads) shown in a random initial configuration. (Generated using RasMol V2.6).
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residues by the ambient water molecules, and results in their being driven
to the relatively less exposed center of the molecule in the low lying energy
states, whereas the polar residues are closer to the surface. It is important
to note that we treat all H&H pairs on an equal footing, i.e., there is no
``teleological'' information that is fed into the system by connecting only
those H&H pairs which are close to each other in the native configuration
for a particular sequence. It is known that real proteins are distinguished
by H&P sequences that lead to unique ground states while a randomly
chosen H&P sequence will typically give rise to a highly degenerate
ground state. In the absence of detailed knowledge regarding the rules
singling out the realistic H&P sequences we considered a generic H&P
sequence obtained by choosing fifty percent of the residues to be
hydrophobic and distributing them randomly along the chain. We have
checked that our results were quite robust with respect to changing the
sequence of hydrophobic or hydrophilic residues, or even taking all of them
to be hydrophobic.

The energy of the molecule is

E=
K
2

:
i, j

ci, j |ri&rj |
2=K :

i, j

r-
i Vijrj . (3)

If we define Qi=1 for the i th vertex being occupied by a hydrophobic
residue, and Qi=0 otherwise, we may write ci, j=QiQj and

Vij =[(NH&1) ci, i&ci, j&1&ci, j+1] $i, j

&(1&$i, j )(1&$i, j&1&$i, j+1) c i, j . (4)

We take the bond angles :i , i=1,..., N&1, to have the alternating
values of (&1) i :, with :=68%. The dihedral angles ,i can take on the
values of 0 and \2?�3. The state (conformation) of the system is uniquely
specified once the numbers [,i ] are given.

The constraints placed on the conformations due to the rigid chemical
bond lengths and by restricting the chemical and dihedral angles to discrete
values, prevent the molecule from trivially collapsing to a point. This has
a similar effect to placing the chain on a tetrahedral lattice; however, since
the chemical angles are slightly different from ?�3, this is not exactly true,
and the configurations are off lattice when compared to a tetrahedral struc-
ture. Since the chain has a certain rigidity and persistence, the volume of
the folded structures grows with N, the number of residues, for relatively
small N. However, for asymptotically large N, we do not expect this to
continue to hold; the density of the collapsed state is apt to increase

408 Tu� zel and Erzan



without bound, and therefore the collapsed configurations cannot be taken
seriously in this limit. This is a weak point of the Hookean model.(19)

The position vectors ri of each of the vertices in the chain can be
expressed in terms of a sum over the directors Ri of unit length represent-
ing the chemical bonds, which may be obtained from R1 by successive rota-
tions Mk(:k) and Tk(,k) through the bond and the dihedral angles, (20) viz.,

ri= :
i&1

j=1

`
2

k= j

Tk(,k) Mk(:k) R1 (5)

where we may choose R1 to lie along any of the Cartesian directions in our
laboratory frame without loss of generality. Although the allowed values of
the dihedral angles are discrete, the energy is a perfectly well defined, dif-
ferentiable function of these angles. We obtain the torques that act at each
of the vertices i by substituting Eq. (5) in Eq. (3), taking the partial
derivative with respect to ,i , viz.,

{i=&�E��,i (6)

and evaluating these derivatives at the given set of values [,i ].
The system is assumed to evolve within a viscous environment, subject

to random kicks from the ambient molecules. We may write the Langevin
equation,

dri (t)
dt

=
1
`r

F i+!r(i, t) (7)

where `r is a friction coefficient and !r(i, t) is a Gaussian distributed noise
terms, delta correlated in i and in time. Equivalently, in terms of the state
vector ,=(,1 ,..., ,N), we have the Langevin equation

d,i (t)
dt

=
1
`{

{i+!{(i, t) (8)

where the torque {i is a function of all the angles [,], `{ is the appropriate
friction coefficient and !{ is again a Gaussian random force delta correlated
in space and time. Viewed in this way the dynamics is similar to a pinned
interface(21, 22) or a charge density wave system(23�25) in 1+1 dimensions.

The dynamical rules we will employ for the sequential updating of the
system loosely correspond to a discrete version of the dissipative system
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envisaged in Eq. (8) above. In order to mimick the conservation of angular
momentum, we will choose pairs of vertices at a time, turning the ,i in
opposite directions.(7) (This does not strictly conserve angular momentum,
due to the fact that the axes of rotation are not necessarily parallel;
however since the motion is highly dissipative, we do not think this is a big
problem.) The choice of vertices for each updating operation is done accor-
ding to the distribution of torques over the vertices of the chain.

1. The most natural probability distribution we can form out of the
torques, without introducing any special scale into the problem, is
P(i)=|{i |

'��j |{j |
'. At each step, for that given configuration of the chain,

we form two such independent distributions, one for [{i>0] and another
for [{i<0]. Note that ' is a parameter of our dynamics, and we will be
discussing later how changing ' affects our results.

2. We choose a pair of vertices (one with positive, the other with a
negative torque on them), according to the above distribution.

3. We then update the dihedral angles at the selected vertices, by
incrementing them according to ,i (t+1)=,i (t)+sign({i )_(2?�3).

The fact that the increments are of a fixed size leads in many cases to
an ``overshooting'' of the nearby minimum of the respective torques,
thereby resulting in a randomization of the impulses received.

For large positive values of ', those angles ,i with the maximal con-
jugate torques are incremented; for negative values of ' the small values of
the torque are preferred. For '=0 the angles to be incremented are picked
randomly. If one choses ' to be vary large, then we find that there is a large
probability that the most recently updated ,i still carries a very large
torque, resulting in a jamming of the dynamics. Incrementing the dihedral
angles with the large conjugate torques resulted not in the relaxation of
these torques but in pumping energy into the system, as when pushing a
swing at the top of its arc. After applying the search strategy based on
changing the torques according to a distribution, we found that updating
the maximal torques ('>0) drives the system to a state with relatively high
energies, whereas a random search ('=0) or preferentially choosing the
minimal torques ('<0) gives rise to more successful strategies for reaching
low lying energy states. Thus it can be said that ' here plays the role of a
coarse- or fine-graining parameter in the exploration of the energy
landscape.

It should be noted that incrementing preferentially those vertices with
high torques on them corresponds, in the language of the Langevin Eq. (8)
to relatively small friction coefficients `{ ; when '=0, one simply has ther-
mal noise, and no force term.
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III. DISTRIBUTION OF ENERGY STATES AND
LEVEL SPACINGS

In Figs. 2�5 we display the energy distribution of the discrete con-
figurational states explored by our chain of N=48 residues (Fig. 1) under
the dynamics outlined in Section II. After the first 5000 steps were dis-
carded, the statistics were taken over 5000 steps of the trajectory. It can be
seen that the shape of the curve does not change too much as the peak
shifts to successively higher values of the energy for positive '. For
relatively large values of ', however, the distribution is distorted towards
a Gaussian, indicating that the states explored are less correlated.

These figures compare very favorably with the energy histograms
obtained by Socci and Onuchic(26) for a Monte Carlo simulation on a lat-
tice model of proteinlike heteropolymers.

We have been able to fit the simulation results very successfully with
a distribution of the Wigner form (Figs. 2 and 3)

fW(E )=a(E&E0) e&b(E&E0)2
(9)

for '=&6 to '=3, and the parameters for the fit are given in Table Ia.
Here E0 corresponds to the offset due to the lowest energy state attained
for the different ', and it can be seen that it shifts the distribution to higher
values of the energy for higher values of '. The distributions become

Fig. 2. The normalized energy histograms, averaged over 10 random initial states for chains
of N=48, for different '�0, along paths of 104 steps, with the first 5000 steps discarded. The
fits are to the Wigner distribution for '=0, 1, 3 and Gaussian distribution for '=8.
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Fig. 3. The normalized energy histograms, for chains of N=48, for different '<0 (see
Fig. 2). The fits are to the Wigner distribution.

Fig. 4. The normalized energy histograms along trajectories in phase space for the N=48
chain, for '�0 as in Fig. 2, fitted with the ``inverse Gaussian'' distribution given in Eq. (10).
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Fig. 5. Energy histograms for '<0 as in Fig. 4, fitted with the ``inverse Gaussian'' distribu-
tion given in Eq. (10), for the N=48 chain.

Table Ia. The Parameters a, b and E0 Used for Fitting the
Energy Histograms to the Wigner Distribution

fW(E)=a(E&E0) e&b(E&E0)2

' a (10&4) b (10&7) E0

&6 1.50 15.0 420
&4 1.50 15.0 380
&2 2.00 15.0 350

0 1.25 8.7 300
1 0.40 2.0 950
3 0.37 1.2 1300

Table Ib. The Mean a~ and the Variance b� Used for
Fitting the Energy Histograms to the Gaussian

Distribution

' a~ b� (106)

6 4300 2.2
8 4800 2.7

413Hookean Model for Protein Folding



Gaussian for '=6 and '=8; the results of the Gaussian fits are presented
in Table Ib.

It should be mentioned that the same energy distributions may be
fitted equally well or better by the ``inverse Gaussian,''(13) where the prob-
ability density is given by (see Figs. 4 and 5),

fIG(E )=� A
2?E 3 exp _&

A(E&B)2

2B2E & . (10)

It will be noted that this has the same functional form as the distribution
of first passage times over a distance d for an Ornstein�Uhlenbeck pro-
cess(12) with diffusion coefficient D and initial drift velocity v, in the regime
of small times, if one makes the further identifications A=d 2�(2D) and
B=d�v. We postpone until Section 4 a discussion of this result. The
parameters for the fits to the parameters A and B are given in Table II. The
estimated errors for each fit are also given in the table. We find that both
the ``diffusion constant (mobility)'' and the ``drift velocity'' of the phase
point along its trajectory in phase space depend on ', being maximum for
'=0 and decreasing for positive values of '. For '<0 they essentially stay
the same.

We have also considered the statistics of energy differences between
successive energy states visited along a trajectory obeying the above
dynamics. This does not necessarily mean that the energy differences con-
sidered here are nearest neighbors on the energy spectrum; rather these
statistics may be considered as a classical analogue of an absorption (or
emission) spectrum. We found that the distributions were symmetric for 2E

Table II. The Parameters A, B Used for Fitting the Energy Histograms to the
Inverse Gaussian Distribution [see Eq. (10)]a

' A (_103) 2A (_10) B (_103) 2B (_10)

&6 7.4 48.0 1.2 2.3
&4 6.8 10.0 1.2 0.5
&2 6.6 6.4 1.1 0.3

0 6.3 4.9 1.4 0.4
1 18.4 7.9 3.1 0.8
3 28.3 32.2 4.0 1.2
6 33.7 39.5 4.6 1.4
8 38.3 59.2 5.2 2.0

a The estimated errors are also provided. (Calculated using Levenberg�Marquart algorithm).
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Fig. 6. (a) The distribution of energy steps along a trajectory in phase space according to
the '-dynamics of the N=48 chain, for different '. The last 5000 steps along a 10000 steps
trajectory were considered. (b) The fits, for '=0 (left) and for '=8 (right) to the stretched
exponential form texp(&2Ec), for c=0.58 and c=0.81 respectively, in the large 2E limit.
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Table III. The Parameters c Used for Fitting the Distribution of
Energy Steps to a Stretched Exponential in the Form

P(2E )texp[2E )c], Together with the Correlation Coefficients r2

' c r2 (corr. coef.)

&8 0.50 0.89
&6 0.49 0.97
&4 0.54 0.98
&2 0.54 0.98

0 0.58 0.97
1 0.74 0.95
2 0.73 0.96
3 0.81 0.95
4 0.73 0.96
6 0.85 0.95
8 0.81 0.95

negative or positive, and that they obeyed a stretched exponential distribu-
tion (for positive 2E ),

P(2E )texp[&(2E )c)]. (11)

The distribution of energy steps for different ' are given in Fig. 6a. The
plots of ln(&ln(P(2E ))) versus ln(2E ) for '=0 and '=8 are shown in

Fig. 7. Energy histogram for '=0 and the density of states, n(E ), for #=10&5 obtained for
'-dynamics and the Metropolis Monte Carlo respectively.
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Fig. 6b. The fits for other ' values are equally good. The values of the expo-
nent c are shown in Table III, where it can be seen that c starts from small
values for '=&8 and seems to tend to 1 as ' becomes large and positive,
again exhibiting a decorrelation effect as the energy landscape is probed
with larger and larger '. The correlation coefficients showing the goodness
of fit for each ' are also given in Table III.

Finally, it is interesting to make a comparison between the energy
states explored under the ``'''-dynamics and Metropolis Monte Carlo. Since

P(E )=n(E ) exp(&#E ) (12)

n(E ) should become identical to P(E ) in the limit of # � 0. In Fig. 7 we
show our results for n(E ) with #=10&5, and P(E ) for '=0.

IV. ORNSTEIN�UHLENBECK PROCESS AND THE WIGNER
DISTRIBUTION

We would now like to show that the energy obeys a stochastic process
which can be modelled by Fokker�Planck equations with the Wigner (9)
or the inverse Gaussian (10) forms as stationary solutions.

We remind the reader that an OU process describes the diffusive
motion of a particle subject to a drift velocity proportional to the distance
from the origin.(12) It can easily be seen that such a process for a single par-
ticle in one dimension would be described by the Langevin equation,

dx
dt

=&
1
`

gx+!(t) (13)

with a Hookean force F(x)=&gx and a delta correlated random force
!(t), ( (!(t))2) =_2.

Since there is no explicit time dependence of E, we have

dE
dt

=:
i

�E
�ri

}
�ri

�t
. (14)

Substituting from (7) we get,

dE
dt

=&
1
`r

:
i \

�E
�r i+

2

+:
i

�E
�ri

} !i (t). (15)
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From (3) we may compute that

:
i \

�E
�ri+

2

=
2KE

`r
+ :

i, j, k
i{ j

cik cjk(ri&rk) } (rj&rk). (16)

We see that the second term is like an average of the products (ri&rk) }
(rj&rk) over (i, j) pairs (i{ j), and for a reasonably isotropic configura-
tion, it vanishes. To the same approximation, we may assume that the
second term in Eq. (15) is itself equal to a Gaussian stochastic noise, i.e.,
set !E (t)=K � ij cij (ri&rj ) } !i (t). This yields the required result, namely,

dE
dt

=&
2KE

`r
+!E (t). (17)

This stochastic equation is equivalent(27) to the Fokker�Planck equation

�P(E, t)
�t

=&
�

�E _&
�8� (E )

�E
P(E, t)&D

�P(E, t)
�E & (18)

for the probability distribution of E, where D=2(!2
E) and 8� (E )=

�E
0 (2K�`r) x dx=bE 2�2, with b=2K�`r . The constraints we have placed on

our configurational degrees of freedom (see Eq. (4)ff.) require that there be
some minimum value of the energy where the probability current vanishes,
implying reflecting boundary conditions there, as well as at some Emax ,
which we may take to � for all practical purposes. To mimick these con-
straints we introduce an infinitely high potential barrier at E0 , while at the
same time shifting the point of equilibrium of the Hookean ``force'' to this
point. A convenient choice for a singular potential to add to 8� , is
&ln(E&E0). These reflecting boundary conditions at E0 and at � then
lead to a stationary solution P(E ),

P(E )=ae&8(E ) (19)

where 8(E )=8� &ln(E&E0), or,

8(E )= 1
2b(E&E0)2&ln(E&E0) (20)

and a is a normalization constant. Substituting (20) in (19) leads to the
Wigner formula (9).
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A stationary distribution of the inverse Gaussian form may be
obtained if we modify the quadratic potential 8� in a different way to model
the constraints in the system, viz.,

8(E )=
A

2B2E
(E&B)2+

3
2

ln E (21)

This also leads to reflecting boundary conditions, at E=0 and E � �, and
a point of equilibrium at E=B. As the stationary solution we obtain the
inverse Gaussian distribution (10), as can be seen from direct substitution
into (19).

The distribution of first passage times for the attainment of the
optimum solution in such diverse high dimensional optimization problems
as fits to X-ray patterns, travelling salesman problems and determination of
the lowest energy state for lattice models of protein configurations, have
been reported by Li and coworkers(13) to obey the Ornstein�Uhlenbeck
form. The plots of these distributions all display a striking similarity to
each other, and to the distribution of energy states which we have found
in the present problem. Now we see that if an optimization problem has a
quadratic cost function C which, in terms of the large number of varia-
tional parameters in a reasonably isotropic phase space, has the same form
as our energy Eq. (3), then the optimization algorithm defines a dynamics
for C which may be described by means of an OU process as in Eq. (13),
with a repulsive barrier at Cmin and at �. This may be modelled by the
same Fokker Planck equation (18), and potentials 8, as we have discussed
above.

Recall that for an OU process, with an initial displacement x(0)=d,
the solution for the distribution of first passage times t through the origin
is given by ref. 12,

f (t)=
2yd

?1�2_ \
\

1& y2+
3�2

e&(\y2d 2)�(_ 2(1& y 2) (22)

where \= g�`, g is the spring constant, and y=exp(&\t). We see that (22)
goes over, in the limit of large times, i.e., y<<1, to

fW( y)=
2d\3�2

?1�2_
ye&\d 2y2�_ 2

(23)

On the other hand, for very small times, (22) becomes, to leading order,

fIG(t)=
2? d_2

(2?_2t)3�2 e&(d&vt)2�2_2t (24)
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where we have defined \d=v. It should be noted that these functions (23
and 24) have the same form, as functions of y and t, respectively, as the
Wigner and inverse Gaussian distributions which we have found above,
and numerically are very similar to each other.

V. DISCUSSION

In this paper we have explored certain features of random
heteropolymers undergoing a folding process driven by hydrophobic inter-
actions. Our aim is to seek generic models for those coarse grained proper-
ties of real proteins that may be rather universal, and therefore depending
only on the statistical properties of random chains, and independent of the
particular sequence of amino acids making up the protein chain.

We have adopted the premise that the ``native state'' should be con-
sidered as a dynamical attractor, rather than a single static state, and that
therefore the interesting statistical quantities should depend on the way
that the phase space is explored under a given dynamics. Modeling
hydrophobic interactions with effective Hookean springs, we have
proposed a dissipative dynamics with a tunable parameter, revealing dif-
ferent degrees of fine- or coarse-graining of the energy landscape.

We have been able to fit the histograms of the energy states encoun-
tered along such dissipative folding trajectories, with distributions of the
Wigner or inverse Gaussian form. We observe that the distribution of first
passage times in rather general global optimization problems(13) also falls
on similar curves. We have provided an explanation for this fact on the
basis of the quadratic (Hookean) form of the Hamiltonian.

It is very intriguing that the seemingly universal behaviour which ben-
Avraham finds for the density of vibrational states(1) and the ultraviolet
absorption spectra reported by Mach et al.(28) for various proteins, also
display very similar curves. Thus there seems to be a striking universality(3)

not only between different protein-like structures, but also between dif-
ferent ranges of length and energy scales. It is very surprising that the den-
sity of vibrational states should have a behaviour similar to energy
histograms under our dynamics, since the former involve inertial degrees of
freedom, while the latter arise from dissipative dynamics. (29)

We would like to make a few concluding remarks about a remaining
puzzle, which is the connection between the Wigner distribution, which
arises as the distribution of eigenvalue spacings for Gaussian orthagonal
matrices, (8�10, 30) and the present limiting form we have found for the dis-
tribution of energy states. The puzzle promises to be fruitful, because we
believe that the current state of the art of understanding the energy
landscapes of proteins is very similar to that of the study of the energy
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spectra of very large nuclei in the '50s, when it was realized that the
problem might be very advantageously treated as a statistical one. For real,
large nuclei, the level spacing distribution, properly scaled with the average
density of states for different energies, exhibits a remarkable invariance
over the entire energy range.(9) It was then found that the energy levels and
nearest-neighbor spacings are governed to a large extent by the statistics of
eigenvalues and eigenvalue spacings of orthogonal matrices with a
Gaussian distribution of matrix elements.(8�10, 30) The statistics of nuclear
energy level spacings approximately obey the so called Wigner ``surmise''
(2). This is the distribution of eigenvalue spacings for 2_2 Gaussian
orthogonal matrices which can be also obtained by considering the square
root of the sum of the squares of two independent but identically dis-
tributed Gaussian random variables of zero mean.

It is of great interest to note that the so-called Wigner distribution
arises also in ``quantum chaos''(31�33) and in the energy spectra of large
atomic clusters.(34) Thus, there seems to be a universality to the spectral
fluctuations of confined systems of sufficient complexity.(9, 35)

It is very intriguing to compare the results for '�0 (Fig. 2) with the
numerically obtained nth neighbor spacing distributions of the eigenvalues
for Gaussian orthagonal matrices, as reported by Porter, (11) where the
identical shift of the peak and tendency to a symmetric Gaussian distribu-
tion is found. This we interpret as reinforcing our observation that larger
' dynamics results in a more coarse-grained sampling of the energy
landscape. Nevertheless, the connection to nth neighbor spacing distribu-
tions of eigenvalues of random matrices and the Ornstein�Uhlenbeck pro-
cess still remains to be understood.
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